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Perceptron Review

Weight vector w , initially set to all-0 vector

Initial hypothesis: h(x) = sign(w · x)
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Perceptron Review

Weight vector w , initially set to all-0 vector

Initial hypothesis: h(x) = sign(w · x)
Given an example x ∈ Rn and its label c(x) = sign(v · x),

▶ If h(x) = c(x) then no update is performed
▶ If h(x) ̸= c(x) then w is updated by setting wnew to w + c(x)x

Example: False positive: h(x) = 1, c(x) = −1 =⇒ wnew = w − x
(w − x) · x = w · x − x · x < w · x
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Motivation

What if the data’s not linearly separable?

We can try representing it in a higher dimension!

But this can be computationally expensive :(

To deal with this, we can use kernel functions.
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Definition

Definition

A kernel is a function K (x , y) such that for some mapping ϕ : Rn → RN ,
K (x , y) = ϕ(x) · ϕ(y).
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Definition

Definition

A kernel is a function K (x , y) such that for some mapping ϕ : Rn → RN ,
K (x , y) = ϕ(x) · ϕ(y).

Suppose x , y ∈ Rn and ϕ(x), ϕ(y) ∈ RN , n < N. If N is very large, just
writing down ϕ(x) and ϕ(y) or computing ϕ(x) · ϕ(y) can take an
enormous amount of time.
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Definition

Definition

A kernel is a function K (x , y) such that for some mapping ϕ : Rn → RN ,
K (x , y) = ϕ(x) · ϕ(y).

Suppose x , y ∈ Rn and ϕ(x), ϕ(y) ∈ RN , n < N. If N is very large, just
writing down ϕ(x) and ϕ(y) or computing ϕ(x) · ϕ(y) can take an
enormous amount of time.

Since K (x , y) is a function of x and y (which are in n), we can potentially
compute the desired value much faster by using this kernel function!
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Example

Say the decision boundary for our data is some kind of ellipse with
equation x21 + x22 +

√
2x1x2.

This equation isn’t linear in x1, x2. To deal with this, create a mapping
ϕ : R2 → R3, for x = (x1, x2), ϕ(x) = ϕ(x1, x2) = (x21 , x

2
2 ,
√
2x1x2).
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Example

Say the decision boundary for our data is some kind of ellipse with
equation x21 + x22 +

√
2x1x2.

This equation isn’t linear in x1, x2. To deal with this, create a mapping
ϕ : R2 → R3, for x = (x1, x2), ϕ(x) = ϕ(x1, x2) = (x21 , x

2
2 ,
√
2x1x2).

Suppose we have a = (a1, a2) and b = (b1, b2) and we want to compute
K (a, b).

ϕ(a) · ϕ(b) = (a21, a
2
2,
√
2a1a2) · (b21, b22,

√
2b1b2)

= a21b
2
1 + a22b

2
2 + 2a1a2b1b2

= (a1b1 + a2b2)
2

= (a · b)2

= K (a, b)
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Dual Perceptron

Formulates our Perceptron algorithm in a slightly different way

Replaces hypothesis vector with a new collection of examples where
the algorithm has made a mistake

Allows for algorithm to only depend on taking inner products between
examples in Rn

We can apply kernel functions!
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Dual Perceptron

Suppose we are at an intermediate step in dual Perceptron.

Algorithm has made k mistakes so far, on examples
xi1 , xi2 , . . . , xik ∈ Rn

Corresponding labels c(xi1), c(xi2), . . . , c(xik ) ∈ {−1, 1}

Hypothesis vector

w =
k∑

j=1

c(xij )xij
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Dual Perceptron

Hypothesis vector

w =
k∑

j=1

c(xij )xij

w · x

w · x =

 k∑
j=1

c(xij )xij

 · x =
k∑

j=1

c(xij )xij · x

This means that we only ever need to compute inner products between
examples xij , x ∈ Rn in order to able to compute w · x .
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Kernelized Dual Perceptron

Running dual Perceptron over higher dimensional RN

Using kernel function ϕ : Rn → RN for inner product computations
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Kernelized Dual Perceptron

Suppose we are at an intermediate step in kernelized dual Perceptron.

Algorithm has made k mistakes so far, on examples
xi1 , xi2 , . . . , xik ∈ Rn

Label examples according to c(x) = sign(v · ϕ(x)) (note that v is a
N-dimensional vector)

Hypothesis vector

w =
k∑

j=1

c(xij )ϕ(xij )
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Kernelized Dual Perceptron

Hypothesis vector

w =
k∑

j=1

c(xij )ϕ(xij )

w · ϕ(x)

w · ϕ(x) =

 k∑
j=1

c(xij )ϕ(xij )

 · ϕ(x) =
k∑

j=1

c(xij )ϕ(xij ) · ϕ(x)

=
k∑

j=1

c(xij )K (xij , x)
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Kernelized Dual Perceptron

w · ϕ(x)

w · ϕ(x) =
k∑

j=1

c(xij )K (xij , x)

This can be computed efficiently if K can be computed efficiently! Note
that we never have to explicitly write down the high-dimensional vector w
while running kernelized dual Perceptron.
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